

Tetrahedron

Tetrahedron 64 (2008) 2071-2079

www.elsevier.com/locate/tet

Unusual dimerization of *N*-protected bromomethylindoles/benzyl bromide with arylmetal halides: generation of indolylmethyl/benzyl radical

Neelamegam Ramesh, Chandran Prakash, Radhakrishnan Sureshbabu, Vasudevan Dhayalan, Arasambattu K. Mohanakrishnan*

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil nadu, India

Received 30 April 2007; received in revised form 4 December 2007; accepted 20 December 2007 Available online 24 December 2007

Abstract

A detailed study on the interaction of *N*-protected bromomethylindoles with various types of aryl/alkyl Grignard is reported. Full experimental details on the mechanism of the unusual dimerization reaction are presented. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Bromomethylindole; Benzylbromide; Alkyl/aryl Grignard; Indolylmethyl/benzyl radical

1. Introduction

Indole and its myriad of derivatives are important segments of a large number of natural products of both marine and terrestrial origin, and hence it continues to capture the attention of the synthetic organic chemist. Over the years, synthetic elaboration of *N*-protected bromomethylindoles has been thoroughly exploited to effect the syntheses of different types of indole based natural products. In continuation of our interest in the synthesis of carbazole-based alkaloids, we wanted to develop a viable procedure for the arylation of *N*-protected bromomethylindoles, as the existing procedure is applicable only to electron rich arenes. In the course of this investigation, we discovered an unusual dimerization of *N*-protected bromomethylindoles with the interaction of arylmagnesium halides.

2. Results and discussion

In continuation of our synthetic studies on indole derivatives, recently, we have reported⁴ an unusual dimerization of N-protected 2-bromomethylindoles 1a' via interaction with

phenylmagnesium chloride or 4-methoxyphenylmagnesium bromide at room temperature. In that report, we proposed the formation of dimer 2a via the intermediacy of an indolylmethyl Grignard 3, Scheme 1. In both the conditions, i.e., a slow addition of phenylmagnesium chloride to the solution of bromo compound 1a' in THF or reverse addition of bromo compound to the Grignard, the dimer 2a was obtained in almost comparable yield.

$$\begin{array}{c} \text{SPh} & \text{PhMgCI/THF} \\ \text{(or)} \\ \text{SPh} & \text{4-MeO-C}_{6}\text{H}_{4}\text{MgBr} \\ \text{Is } & \text{N}_{2}\text{ atm.} \\ \text{15 h, 50\%} & \text{SO}_{2}\text{Ph} \\ \text{1a'} & \text{2a} \\ \\ & \text{SO}_{2}\text{Ph} \\ \\ & \text{3a X = CI/Br} \\ \end{array}$$

Scheme 1.

The unusual dimerization reaction was then tested with a variety of bromomethylindoles 1a'-j and the results obtained are presented in Table 1. In general, the phenylmagnesium

^{*} Corresponding author. Tel.: +91 44 24451108; fax: +91 44 22300488. E-mail address: mohan 67@hotmail.com (A.K. Mohanakrishnan).

Table 1 Dimerization of N-protected bromomethyl indoles using PhMgCl

Entry	Bromo/chloro indole ⁵	Conditions	Dimerized product	Yield ^a (%)
	SPh X	1.2 equiv PhMgCl, rt, 3 h 1.2 equiv MeOC ₆ H ₄ MgBr, rt, 5 h	SPh SO₂Ph	60 52
1	`N` I SO₂Ph	1.2 equiv MgBr, rt, 5 h	N N	48
	1a' X = Br 1a" X=Cl	1.2 equiv MeSC ₆ H ₄ MgBr, rt, 4 h 1.2 equiv PhMgCl, rt, 5 h	SO₂Ph PhS 2a	51 48
2	CN Br SO ₂ Ph 1b	1.2 equiv PhMgCl, rt, 8 h	CN SO ₂ Ph NC SO ₂ Ph NC 2b	20
3	Me N SO ₂ Ph 1c' X = Br	1.2 equiv PhMgCl, rt, 5 h	Me SO ₂ Ph	48
	1c" X=Cl	1.2 equiv PhMgCl, rt, 7 h	SO ₂ Ph Me	43
4	Br O Ph 1d	1.2 equiv PhMgCl, rt, 5 h	Ph O Ph 2d	42
5	Br N SO ₂ Ph 1e	1.2 equiv PhMgCl, rt, 10 h	N—SO ₂ Ph SO ₂ Ph 2e	45
6	Br N SO ₂ Ph 1f	1.2 equiv PhMgCl, rt, 5 h	N-SO ₂ Ph 2f N-SO ₂ Ph SO ₂ Ph	0
7	Br CO ₂ Et SO ₂ Ph 1g	2 equiv PhMgCl, rt, 6 h	4 No reaction	
8	Br N SO ₂ Ph 1h	1.2 equiv PhMgCl, rt, 10 h	PhO ₂ S Br PhO ₂ S Br PhO ₂ S	71

Table 1 (continued)

Entry	Bromo/chloro indole ⁵	Conditions	Dimerized product	Yield ^a (%)
9	R CO_2Et Br SO_2Ph	1.2 equiv PhMgCl, rt, 6 h	R CO_2Et SO_2Ph N R PhO_2S EtO_2C	48
	1j R=OMe	1.2 equiv PhMgCl, rt, 6 h	2j R=OMe	55

^a Isolated yield after column chromatography.

chloride induced dimerization was found to occur with a wide variety of bromomethylindoles with the exception of 3-bromomethylindoles **1f** and **1g** (entries 6 and 7). The dimerization of bromo compound 1a' proceeded in reasonable yields with aryl/heteroaryl Grignards (entry 1). The rate and yield of the dimerization were found to be somewhat less with the corresponding N-protected chloromethylindoles (entries 1 and 3). The presence of cyano group at the 3-position significantly lowers the yield of the dimerization process (entry 2). On the other hand, the bromo compounds 1i and 1j containing an ethyl ester at the indole-3-position smoothly proceeded with the dimerization process to afford the respective products 2i and 2j in 48 and 55% yields (entry 9). The observed dimerization was found to be successful with 1-phenylsulfonyl-4-bromomethylindole **1e** (entry 5). However, contrary to our earlier observation, ⁴ the interaction of 1-phenylsulfonyl-3-bromomethylindole with phenylmagnesium chloride did not produce the dimer 2f, instead column chromatographic purification led to isolation of the corresponding phenylated indole 4 in 50% yield (entry 6).

To our surprise, interaction of *N*-phenylsulfonyl-2-carbethoxy-3-bromomethylindole **1g** with phenylmagnesium chloride produced neither dimer nor phenylated product, only the starting bromo compound was recovered unchanged (entry 7).

Even though the formation of the dimer 2a was proposed through the intermediacy of indolylmethylmagnesium halide, there is no literature precedence for this type of Grignard exchange between benzylic halides and aryl Grignards. To our delight, the interaction of bromo compound 1a' with phenylmagnesium chloride followed by a careful column chromatographic separation led to the isolation of biphenyl 5 in 63% yield in addition to the dimer 2a, Scheme 2. Similarly, the interaction of the bromo compound 1a' with freshly prepared phenylmagnesium bromide led to the isolation of dimer 2a and biphenyl 5 in 65 and 67% yields, respectively. The

formation of biphenyl **5** is possible only when radical intermediate is involved. Obviously, the interaction of bromo compounds with aryl Grignards produced the indolylmethyl radical **6** and phenyl radical **7**. Self-dimerization of these radicals must lead to the dimer **2a** and biphenyl **5**, Scheme 2.

In order to understand the mechanistic rational behind this dimerization process, as a representative case the dimerization of bromo compound 1a' was planned at low temperature. Accordingly, a solution of bromo compound 1a' was interacted with phenylmagnesium chloride in dry THF at −78 °C for 2 h followed by quenching of the reaction mixture with aq NH₄Cl led to the quantitative recovery of the bromo compound 1a'. However, when the mixture of bromo compound 1a' with phenylmagnesium chloride in dry THF was slowly raised from -78 °C to room temperature followed by usual workup, dimer 2a, biphenyl 5, and phenylated product 8⁶ were isolated in 60, 52, and 10% yields, respectively. Under the identical conditions, interaction of the bromo compound 1a' with in situ generated PhCu also afforded the products 2a and 5 along with minor amount of the 2-benzylindole 8, Scheme 3. The formation of benzylindole 8 in minor portions might be due to the cross-coupling between indolylmethyl radical 6 and phenyl radical 7.

1a'
$$\frac{\text{i) PhMgCl/ THF}}{\text{ii) -78 °C, 2 h}}$$
 2a (60%) + 5 (52%) + $\frac{\text{SPh}}{\text{SO}_2\text{Ph}}$ 8 (10%)

PhMgCl $\frac{\text{i) Cul/THF, -78 °C}}{\text{iii) 1a'/THF}}$ 2a (56%) + 5 (48%) + 8 (5%)

Scheme 3

Finally, the reaction of bromo compound 1a' with PhMgCl and in situ generated PhZnBr or PhCu were carried out at different temperatures. The results obtained under these conditions are outlined in Scheme 4. In all the cases, the biphenyl 8 was isolated around 40–55% yields.

la'
$$\frac{PhMgCl/PhZnBr/PhCu}{THF}$$

$$-60 ^{\circ}C \text{ to -10 }^{\circ}C , 5 \text{ h}$$

$$2a + 5 + 8$$

$$Scheme 4.$$

Table 2

Temperature (°C)	Yield of 2a (%)	Yield of 8 (%)
-60	No reaction	No reaction
-30	40, 40, 42	20, 18, 15
-10	54, 45, 40	08, 10, 12

Interaction of bromo compound 1a' with PhMgCl or in situ generated PhZnBr/PhCu at -60 °C for 5 h led to the recovery of starting material. The yield of dimerization/addition products obtained at -30, -20, and at -10 °C using respective aryl nucleophiles are presented in Table 2. Now it is clear that at low temperature, the self-dimerization of indolylmethyl radical 6 led to the formation of dimer 2a. The cross-coupling of indolylmethyl radical 6 with phenyl radical 7 produced the 2-benzylindole 8. This could be the reason why 2-benzylindole 8 was always formed in minor amounts irrespective of the nature of the aryl nucleophiles employed, i.e., PhMgCl or PhZnBr or PhCu.

It should be mentioned that Negishi and Qian observed a small amount of similar dimerization process during a Pd-mediated coupling of benzyl bromide with phenylethynylzinc bromide. Okamoto and co-workers also observed (in minor amount) the dimerization of benzyl bromide during a cobalt-catalyzed benzyl-alkynyl coupling. There are plenty of reports of the formation of radical intermediates using Grignard reagents in the presence of transition metal catalyst. However, there have been only a few reports for involvement of radical intermediates during the interaction of halo compounds and Grignards reagents. Recently, Oshima and co-workers reported an ethylmagnesium bromide-mediated radical cyclization of allyl β-iodoacetals.

In order to get further insight into the mechanism of the observed dimerization process, the interaction of bromo compound 1a' with alkylmagnesium halides such as isopropylmagnesium bromide, BuMgBr, Bu₂Mg, and TMSCH₂MgCl was planned, Scheme 5. The reaction of bromo compound 1a' with isopropylmagnesium bromide yielded the corresponding alkylated products 9 along with 1-phenylsulfonyl-3-

Scheme 5.

phenylthio-2-methylindole 10.¹² It should be mentioned that in the case of isopropylmagnesium bromide not even a trace of dimeric product 2a was observed. However, the reaction of bromo compound 1a' with BuMgBr/Bu₂Mg furnished the dimer 2a along with butylated product 11. When the bromo compound 1a' was reacted with freshly prepared TMSCH₂MgCl, *N*-phenylsulfonyl cleaved dimer 12 and *N*-protected dimer 2a were isolated in 35 and 18% yields, respectively. The observed cleavage of phenylsulfonyl group of 2a may be due to the nucleophilic character of TMSCH₂MgCl.

The isolation of compound 10 in the case of isopropylmagnesium bromide confirms the intermediacy of indolylmethylmagnesium chloride 3. On the other hand, the absence of compound 10 in the case of BuMgBr/Bu₂Mg/TMSCH₂MgCl effectively rules out the intermediacy of indolylmethyl Grignard and hence in these cases, the observed dimerization might proceed only through an indolylmethyl radical.

Alternatively, the dimer **2a** could also be prepared via the interaction of the bromo compound **1a**' with Bu₃SnH and AIBN or in situ generated Cp₂TiCl, Scheme 6.

In order to generalize the dimerization process, the reaction has to be tested with benzylic systems. To our surprise, benzyl bromide **13** also underwent a smooth dimerization when interacted with phenylmagnesium chloride at room temperature to yield 1,2-diphenyl ethane **14**^{13,14} and biphenyl **5** in 56 and 53% yields, Scheme 7. Since benzylmagnesium chloride is stable and commercially available, it is certain that the dimerization of **13** might proceed only through the intermediacy of benzyl radical.

Similar to the case of bromomethylindole 1a', interaction of benzyl bromide 12 with in situ generated phenylzinc bromide

also furnished the dimer **14** and biphenyl **5**. An attempt was made to trap the intermediate benzyl radical as reported by Roy and co-workers¹⁵ through the interaction of benzyl bromide **13** and phenylmagnesium chloride in the presence of cyclohexen-1-one. However, workup of the reaction afforded Grignard addition product **15** [M⁺, 174.02 (87%)] and benzyl bromide **13** was recovered unchanged, Scheme 7.

Finally, a cross-coupling experiment was performed with mixture of bromo compounds **1a'** and **1e**, Scheme 8. The interaction of 1:1 mixture of these bromo compounds with excess of phenylmagnesium chloride followed by workup led to the formation of respective self-dimerization products **2a/2e** and arylated products **8/16**. It should be mentioned that not even a trace of cross-coupled dimer **17** was observed.

1a' + 1e
$$\xrightarrow{PhMgCI/THF}$$
 2a + 2e + 8 + $\xrightarrow{SO_2Ph}$ 16 SPh $\xrightarrow{SO_2Ph}$ 17 Scheme 8.

Thus, the PhMgCl induced dimerization observed in the case of bromomethylindoles was found to be successful even with benzylbromide. Hence, it may be concluded that the observed dimerization of benzyl/indolylmethyl bromides occurs only through the intermediacy of the respective benzyl/indolylmethyl radical.

3. Summary

In summary, we have carried out the interaction of *N*-phenylsulfonyl-2/3/4-bromomethylindoles with alkyl Grignards and arylmetal halides. The observed dimerization was extended to the benzylic bromide as well. Through different set of reactions, an involvement of indolylmethyl/benzyl radical for the observed dimerization has been proved. An attempt to trap the benzylic radical with cyclohexen-1-one was unsuccessful. Further work is in progress to trap benzylic radical/indolylmethyl radical through an intramolecular pathway. Considering the enormous scope for tin free radical reaction, radical generation using arylmetal halides may find application in organic synthesis.

4. Experimental

4.1. General

All melting points are uncorrected. IR spectra were recorded on a SHIMADZU FT-IR 8300 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using TMS as an

internal standard on a JEOL 400, 500 and Bruker-300 spectrometers, respectively. Mass spectra were recorded on a JEOL DX 303 HF spectrometer. Elemental analyses were carried out on a Perkin—Elmer 240 B instrument.

4.2. Representative procedure for dimerization

1-Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.5 g, 1.09 mmol) dissolved in dry THF (10 mL) was stirred at 0–10 °C under nitrogen atmosphere. To this phenylmagnesium chloride (0.65 mL, 1.31 mmol, 2.0 M in THF) was added slowly. The reaction mixture was slowly raised to room temperature and stirred for 5 h. Then it was quenched with saturated ammonium chloride solution (10 mL), extracted with ethyl acetate (2×20 mL), and the extracts were combined and dried (Na₂SO₄). Removal of solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 9:1) afforded 2a (0.25 g, 60%).

4.2.1. 1,2-Bis(1-phenylsulfonyl)-3-(phenylthio)-1H-indol-2-ylethane **2a**

Compound **2a** (0.25 g, 60%) was obtained as a colorless solid; mp 220 °C; [Found: C, 66.30; H, 4.40; N, 3.92; S, 16.81. $C_{42}H_{32}N_2O_4S_4$ requires C, 66.64; H, 4.26; N, 3.70; S, 16.94%]; R_f (10% EtOAc/hexane) 0.55; ν_{max} (KBr) 1365, 1172 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.22 (2H, d, J 8.3 Hz, ArH), 7.73 (4H, d, J 7.3 Hz, ArH), 7.53—7.51 (2H, m, ArH), 7.37 (4H, t, J 8.3 Hz, ArH), 7.32—7.27 (2H, m, ArH), 7.24 (2H, t, J 7.3 Hz, ArH), 7.16 (2H, t, J 7.8 Hz, ArH), 6.94—6.92 (6H, m, ArH), 6.68—6.65 (4H, m, ArH), 3.77 (4H, s, CH₂); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 144.6, 138.8, 137.3, 136.6, 134.1, 130.9, 129.5, 128.7, 126.5, 126.3, 125.4, 125.2, 124.4, 120.3, 115.6, 113.7, 28.1; m/z (EI) 378 (M⁺, 16%).

4.2.2. 1,2-Bis(1-phenylsulfonyl)-3-(cyano)-1H-indol-2-ylethane **2b**

Following the general procedure, compound **2b** (80 mg, 20%) was obtained as a colorless solid; mp 230 °C; [Found: C, 65.31; H, 3.91; N, 9.35; S, 10.67. $C_{32}H_{22}N_4O_4S_2$ requires C, 65.07; H, 3.75; N, 9.49; S, 10.86%]; R_f (10% EtOAc/hexane) 0.50; ν_{max} (KBr) 2221, 1366, 1187 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.25 (2H, d, J 8.8 Hz, ArH), 7.86 (4H, d, J 7.8 Hz, ArH), 7.61 (2H, t, J 7.4 Hz, ArH), 7.55 (2H, d, J 7.8 Hz, ArH), 7.49 (4H, t, J 8.1 Hz, ArH), 7.44—7.42 (2H, m, ArH), 7.37 (2H, t, J 7.1 Hz, ArH), 3.82 (4H, s, CH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 146.7, 137.6, 135.9, 134.8, 129.8, 127.1, 126.5 (2C), 125.1, 119.5, 115.1, 112.9, 96.5, 28.9.

4.2.3. 1,2-Bis(1-phenylsulfonyl)-3-(methyl)-1H-indol-2-ylethane **2c**

Following the general procedure, compound **2c** (0.19 g, 48%) was obtained as a colorless solid; mp 268 °C; [Found: C, 67.52; H, 5.02; N, 4.97; S, 11.23. $C_{32}H_{28}N_2O_4S_2$ requires C, 67.58; H, 4.96; N, 4.93; S, 11.28%]; R_f (10% EtOAc/hexane) 0.52; ν_{max} (KBr) 1369, 1167 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.22 (2H, d, J 8.1 Hz, ArH), 7.67 (4H, d, J 7.2 Hz, ArH), 7.47 (2H, t, J 7.5 Hz, ArH), 7.35 (4H, t, J 7.2 Hz, ArH),

7.29—7.21 (6H, m, ArH), 3.45 (4H, s, CH₂), 1.84 (6H, s, CH₃); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 138.7, 136.7, 135.2, 133.5, 131.7, 129.1, 126.2, 124.4, 123.6, 119.4, 118.7, 115.1, 29.7, 8.5.

4.2.4. 1,2-Bis(1-benzoyl)-1H-indol-2-ylethane 2d

Following the general procedure, compound **2d** (0.16 g, 42%) was obtained as a colorless liquid; [Found: C, 82.11; H, 5.13; N, 5.91. $C_{32}H_{24}N_2O_2$ requires C, 82.03; H, 5.16; N, 5.98%]; $\nu_{\rm max}$ (KBr) 1690 cm⁻¹; R_f (5% EtOAc/hexane) 0.57; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.63 (4H, d, J 6.9 Hz, ArH), 7.52 (2H, t, J 7.5 Hz, ArH), 7.56 (6H, t, J 7.8 Hz, ArH), 7.34–7.28 (2H, m, ArH), 7.11 (4H, d, J 3.6 Hz, ArH), 6.32 (2H, s, ArH), 4.24 (4H, s, CH₂); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 170.0, 138.5, 137.2, 135.6, 132.9, 130.2, 130.1, 128.5, 122.7, 122.6, 119.8, 114.3, 108.6, 30.2.

4.2.5. 1,2-Bis(1-phenylsulfonyl)1H-indol-4-ylethane 2e

Following the general procedure, compound **2e** (0.17 g, 45%) was obtained as a colorless solid; mp 200 °C; [Found: C, 66.59; H, 4.51; N, 5.23; S, 11.92. $C_{30}H_{24}N_2O_4S_2$ requires C, 66.65; H, 4.47; N, 5.18; S, 11.86%]; R_f (10% EtOAc/hexane) 0.36; ν_{max} (KBr) 1375, 1181 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.86–7.80 (6H, m, ArH), 7.54–7.51 (2H, m, ArH), 7.46–7.41 (6H, m, ArH), 7.14 (2H, t, J 7.5 Hz, ArH), 6.92 (2H, d, J 7.2 Hz, ArH), 6.48 (2H, d, J 3.0 Hz, ArH), 3.20 (4H, s, CH₂); δ_{C} (75 MHz, CDCl₃) 138.3, 134.7, 134.5, 133.8, 129.9, 129.2, 126.8, 125.8, 124.7, 122.9, 111.4, 107.1, 34.1.

4.2.6. 3-Benzyl-1-(phenylsulfonyl)-1H-indole 4

Interaction of bromo compound **1f** with 1.2 equiv of phenylmagnesium chloride using the above-mentioned procedure followed by workup and column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded **4** (0.25 g, 50%) as a colorless solid; mp 65 °C; [Found: C, 72.55; H, 4.89; N, 4.10; S, 9.25. C₂₁H₁₇NO₂S requires C, 72.60; H, 4.93; N, 4.03; S, 9.23%]; R_f (5% EtOAc/hexane) 0.76; ν_{max} (KBr) 1369, 1182 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.98 (1H, d, J 8.4 Hz, ArH), 7.83 (2H, d, J 7.5 Hz, ArH), 7.49 (1H, t, J 7.2 Hz, ArH), 7.41–7.35 (3H, m, ArH), 7.31–7.14 (8H, m, ArH), 3.99 (2H, s, CH₂); δ_{C} (75.5 MHz, CDCl₃) 138.9, 138.2, 135.6, 133.7, 130.9, 129.2, 128.7, 128.6, 126.7, 126.5, 124.9, 123.9, 123.2, 122.8, 119.9, 113.8, 31.4.

4.2.7. 1,2-Bis(1-phenylsulfonyl)-3-(bromo)-1H-indol-2-ylethane **2h**

Following the general procedure, compound **2h** (0.29 g, 71%) was obtained as a colorless solid; mp 208 °C; [Found: C, 51.51; H, 3.41; N, 4.16; S, 8.98. $C_{30}H_{22}Br_2N_2O_4S_2$ requires C, 51.59; H, 3.17; N, 4.01; S, 9.18%]; R_f (20% EtOAc/hexane) 0.84; $\nu_{\rm max}$ (KBr) 1373, 1184 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.22 (2H, d, J 8.3 Hz, ArH), 7.77 (4H, d, J 7.3 Hz, ArH), 7.53–7.51 (2H, m, ArH), 7.43–7.25 (10H, m, ArH), 3.65 (4H, s, CH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 139.1, 136.7, 134.7, 130.1, 129.9, 129.4, 127.9, 126.3, 124.9, 120.3, 115.6, 104.8, 28.2.

4.2.8. Diethyl-2,2'-(ethane-1,2-diyl)bis[1-(phenylsulfonyl)-1H-indole-3-carboxylate] **2i**

Following the general procedure, compound **2i** (0.19 g, 48%) was obtained as a colorless solid; mp 178 °C; [Found: C, 63.19; H, 4.63; N, 4.02; S, 9.42. $C_{36}H_{32}N_2O_8S_2$ requires C, 63.14; H, 4.71; N, 4.09; S, 9.37%]; R_f (20% EtOAc/hexane) 0.48; $\nu_{\rm max}$ (KBr) 1707, 1377, 1175 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.28 (2H, d, J 8.1 Hz, ArH), 7.96 (2H, d, J 7.8 Hz, ArH), 7.83 (4H, d, J 7.8 Hz, ArH), 7.54 (2H, t, J 7.3 Hz, ArH), 7.43 (4H, t, J 7.5 Hz, ArH), 7.35–7.24 (4H, m, ArH), 4.09 (4H, s, CH₂), 3.57 (4H, q, J 7.2 Hz, COO CH_2 CH₃), 1.02 (6H, t, J 6.9 Hz, COOCH₂CH₃); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 163.8, 145.7, 139.1, 136.2, 134.2, 129.5, 127.5, 126.4, 124.9, 124.2, 121.9, 114.4, 113.8, 60.2, 26.9, 13.9.

4.2.9. Diethyl-2,2'-(ethane-1,2-diyl)bis[5-methoxy-1-(phenylsulfonyl)-1H-indole-3-carboxylate] **2j**

Following the general procedure, compound **2j** (0.23 g, 55%) was obtained as a colorless solid; mp 224 °C; [Found: C, 61.19; H, 4.79; N, 3.71; S, 8.68. $C_{38}H_{36}N_2O_{10}S_2$ requires C, 61.28; H, 4.87; N, 3.76; S, 8.61]; R_f (20% EtOAc/hexane) 0.46; ν_{max} (KBr) 1707, 1369, 1171 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.16 (2H, d, J 9.3 Hz, ArH), 7.80 (4H, d, J 7.8 Hz, ArH), 7.57–7.40 (8H, m, ArH), 6.94 (2H, dd, J 2.7 and 9.1 Hz, ArH), 4.04 (4H, s, CH₂), 3.81 (6H, s, OCH₃), 3.68 (4H, q, J 7.2 Hz, COOC H_2 CH₃), 1.08 (6H, t, J 7.2 Hz, COOC H_2 CH₃); δ_{C} (75.5 MHz, CDCl₃) 163.9, 156.9, 146.3, 138.9, 134.1, 130.7, 129.5, 128.7, 126.3, 115.3, 114.1, 113.6, 104.1, 60.3, 55.5, 27.2, 13.9.

4.2.10. Dimerization of bromo compound 1a' using phenylmagnesium chloride at low temperature

Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.55 g, 1.20 mmol) dissolved in dry THF (10 mL) was stirred at -78 °C under a N_2 atmosphere. To this phenylmagnesium chloride (1.5 mL, 3.0 mmol, 2.0 M in THF) was added and stirred for 3 h. Then the reaction mixture was slowly raised to room temperature (by discontinuing the cooling system of the low temperature bath), quenched with saturated NH₄Cl solution (5 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of the solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded 2a (0.28 g, 60%), 5 (0.10 g, 52%), and 8 (50 mg, 10%).

Data for 5: colorless solid; mp 71 °C [lit.¹⁶ mp 70 °C]; R_f (hexane) 0.98; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.58 (4H, d, J 7.5 Hz, ArH), 7.41 (4H, t, J 7.8 Hz, ArH), 7.31 (2H, t, J 7.5 Hz, ArH); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 141.3, 128.9, 127.4, 127.3.

Data for 8: colorless solid; mp 122 °C; [Found: C, 71.24; H, 4.59; N, 3.13; S, 14.00. $C_{27}H_{21}NO_2S_2$ requires C, 71.18; H, 4.65; N, 3.07; S, 14.08%]; R_f (10% EtOAc/hexane) 0.60; $\nu_{\rm max}$ (KBr) 1367, 1178 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.26 (1H, d, *J* 8.4 Hz, ArH), 7.52 (1H, d, *J* 7.8 Hz, ArH), 7.46–7.37 (4H, m, ArH), 7.31–7.12 (11H, m, ArH), 7.03 (2H, d, *J* 6.6 Hz, ArH), 4.79 (2H, s, CH₂); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 144.2, 138.4, 138.1, 136.7, 136.2, 133.6, 130.5, 129.5,

129.0, 128.9, 128.8, 128.4, 126.6, 126.4, 125.6, 125.4, 124.3, 120.1, 115.2, 112.8, 32.2.

4.2.11. Dimerization of bromo compound 1a' using in situ generated phenylcopper at low temperature

Phenylmagnesium chloride (1.5 mL, 3.0 mmol, 2.0 M in THF) was added to a stirred suspension of CuI (0.68 g, 3.59 mmol) in dry THF (20 mL) at -78 °C. After 30 min, 1-phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.55 g, 1.20 mmol) dissolved in dry THF (10 mL) was added and stirred for 2 h. Then, the reaction mixture was slowly raised to room temperature and quenched with saturated NH₄Cl solution (5 mL). It was then extracted with ethyl acetate (2× 20 mL) and the combined organic extract was dried (Na₂SO₄). Removal of solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded 2a (0.26 g, 56%), 5 (90 mg, 48%), and 8 (30 mg, 5%).

4.2.12. 2-Benzyl-1-(phenylsulfonyl)-3-(phenylthio)-1H-indole 8

Phenylmagnesium chloride (0.47 mL, 0.94 mmol) was added to a stirred solution of B(OMe) $_3$ (0.2 mL, 1.76 mmol) in THF (10 mL) at 0 °C under nitrogen atmosphere. After 20 min, Pd(PPh $_3$) $_4$ (0.12 g, 0.10 mmol) and 1-phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.43 g, 0.94 mmol) were added, and the reaction mixture was stirred at room temperature for 12 h. It was then quenched with saturated ammonium chloride solution (10 mL), extracted with ethyl acetate (3×15 mL), and the combined organic extract was dried (Na $_2$ SO $_4$). The solvent was completely removed under vacuo to afford 8 (0.27 g, 60%) as a colorless solid, mp 122 °C.

4.2.13. Interaction of bromo compound 1a' with isopropylmagnesium bromide

1-Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.5 g, 1.09 mmol) dissolved in dry THF (10 mL) was stirred at 0 °C under a N_2 atmosphere. To this isopropylmagnesium bromide (0.64 mL, 1.42 mmol, 1.0 M in THF) was added. The reaction mixture was stirred for 1 h, quenched with saturated NH₄Cl solution (5 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded 9 (0.18 g, 40%) and 10 (80 mg, 20%).

Data for **9**: colorless solid; mp 90 °C; [Found: C, 68.32; H, 5.45; N, 3.23; S, 15.17. C₂₄H₂₃NO₂S₂ requires C, 68.38; H, 5.50; N, 3.32; S, 15.21%]; R_f (10% EtOAc/hexane) 0.80; $\nu_{\rm max}$ (KBr) 1372, 1167 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.22 (1H, d, J 8.4 Hz, ArH), 7.73 (2H, d, J 7.5 Hz, ArH), 7.52 (1H, t, J 7.6 Hz, ArH), 7.36–7.12 (6H, m, ArH), 7.00–6.88 (2H, m, ArH), 6.66–6.63 (2H, m, ArH), 3.11 (2H, d, J 8.8 Hz, CH_2 CH(CH₃)₂), 2.16 (1H, m, CH₂CH(CH₃)₂), 0.94 (6H, d, J 6.6 Hz, CH₂CH(CH_3)₂); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 146.4, 138.4, 136.5, 135.8, 134.0, 133.8, 131.0, 129.4, 128.7, 127.1, 126.4, 125.3, 124.1, 119.6, 115.7, 114.6, 35.8, 22.3, 13.5.

Data for 10: colorless needles; mp 70 °C [lit.¹³ mp 70 °C]; R_f (10% EtOAc/hexane) 0.70; $\nu_{\rm max}$ (KBr) 1366, 1177 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.25 (1H, d, J 8.1 Hz, ArH), 7.79 (2H, d, J 7.5 Hz, ArH), 7.55 (1H, t, J 7.5 Hz, ArH), 7.44 (3H, t, J 6.2 Hz, ArH), 7.32 (1H, t, J 6.9 Hz, ArH), 7.21 (1H, t, J 6.9 Hz, ArH), 7.14–7.02 (3H, m, ArH), 6.93 (2H, d, J 6.9 Hz, ArH), 2.74 (3H, s, CH₃).

4.2.14. Interaction of bromo compound 1a' with n-butylmagnesium bromide

1-Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.6 g, 1.31 mmol) dissolved in dry THF (10 mL) was stirred at 0 °C under a N₂ atmosphere. To this freshly prepared *n*-butylmagnesium bromide [Mg, 0.21 g, 8.54 mmol; *n*-butyl bromide, 0.90 g, 0.7 mL, 6.57 mmol in dry THF (30 mL) reflux for 1 h] was added slowly. The reaction mixture was stirred for 3 h, quenched with saturated NH₄Cl solution (5 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of the solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded 2a (0.2 g, 40%) and 11 (0.17 g, 30%).

Data for 11: thick orange liquid; [Found: C, 68.89; H, 5.87; N, 3.19; S, 14.81. $C_{25}H_{25}NO_2S_2$ requires C, 68.93; H, 5.78; N, 3.22; S, 14.72%]; R_f (10% EtOAc/hexane) 0.80; ν_{max} (KBr) 1366, 1190 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.23 (1H, d, J 8.4 Hz, ArH), 7.73 (2H, d, J 7.8 Hz, ArH), 7.55 (1H, t, J 7.5 Hz, ArH), 7.44–7.34 (3H, m, ArH), 7.31 (1H, t, J 7.5 Hz, ArH), 7.20 (1H, t, J 7.2 Hz, ArH), 7.12–7.04 (3H, m, ArH), 6.88 (2H, d, J 8.1 Hz, ArH), 3.20 (2H, t, J 7.5 Hz, $CH_2(CH_2)_3CH_3$), 1.65 (2H, quintet, J 7.5 Hz, $CH_2CH_2(CH_2)_2CH_3$), 1.35–1.28 (4H, m, $CH_2CH_2(CH_2)_2CH_3$), 0.84 (3H, t, J 6.9 Hz, $CH_2(CH_2)_3CH_3$); δ_C (75.5 MHz, CDCl₃) 147.6, 138.8, 136.9, 136.7, 133.8, 130.9, 129.3, 128.8, 126.3, 126.1, 125.2, 125.1, 124.3, 119.7, 115.3, 111.1, 31.7, 30.6, 27.4, 22.3, 13.9.

4.2.15. Interaction of bromo compound 1a' with dibutylmagnesium

1-Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.6 g, 1.31 mmol) dissolved in dry THF (10 mL) was stirred at 0 °C under a N_2 atmosphere. To this dibutylmagnesium (2.6 mL, 2.61 mmol, 1.0 M in THF) was added. The reaction mixture was stirred for 1 h, quenched with saturated NH₄Cl solution (10 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of the solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded 2a (0.27 g, 55%) and 11 (0.11 g, 20%).

4.2.16. Interaction of bromo compound 1a' with trimethylsilylmethylmagnesium chloride

1-Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.5 g, 1.09 mmol) dissolved in dry THF (10 mL) was stirred at 0 °C under a N₂ atmosphere. To this freshly prepared trimethylsilylmethylmagnesium chloride [Mg, 70 mg, 2.92 mmol; TMSCH₂Cl, 0.27 g, 0.3 mL, 2.18 mmol in dry THF (20 mL)

reflux for 1 h] was added slowly. The reaction mixture was stirred for 1 h, quenched with saturated NH₄Cl solution (5 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of the solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 95:5) afforded **2a** (80 mg, 18%) and **12** (90 mg, 35%).

Data for 12: colorless solid; mp 216 °C; [Found: C, 75.63; H, 5.01; N, 5.83; S, 13.52. $C_{30}H_{24}N_2S_2$ requires C, 75.59; H, 5.08; N, 5.88; S, 13.45%]; R_f (10% EtOAc/hexane) 0.52; $\nu_{\rm max}$ (KBr) 3379 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.01 (2H, s, NH), 7.52 (2H, d, *J* 7.8 Hz, ArH), 7.17–7.10 (16H, m, ArH), 3.27 (4H, s, CH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 142.9, 139.3, 135.4, 130.1, 128.9, 127.6, 125.7, 124.9, 122.5, 120.9, 119.0, 111.1, 99.6, 26.3; m/z (EI) 238 (M⁺, 35%).

4.2.17. Dimerization of bromo compound 1a' using Bu₃SnH/AIBN

To a stirred solution of bromo compound 1a' (0.25 g, 1 mmol) in dry benzene (30 mL), Bu₃SnH (0.2 mL, 1.2 mmol) and a catalytic amount of AIBN (20 mg) were added under N₂. Then it was refluxed for 3 h. Benzene was removed in vacuo and the residue was dissolved in Et₂O (20 mL); a saturated KF solution (10 mL) was added. The resulting mixture was stirred at room temperature for 4 h. Then the organic layer was separated and washed with saturated NaHCO₃ solution (2×30 mL) followed by brine (2×20 mL) and dried (MgSO₄). Removal of the solvent followed by flash column chromatographic purification (silica gel, 10% EtOAc in hexane) afforded the dimerized compounds 2a (0.12 g, 56%) and 10 (20 mg, 10%).

4.2.18. Dimerization of bromo compound 1a' using in situ generated Cp-TiCl

A solution of titanocene dichloride (0.54 g, 2.18 mmol) in dry THF (20 mL) was stirred with activated zinc dust (0.5 g, 7.63 mmol) for 1 h under N_2 . The resulting green solution was then added dropwise to a stirred solution of bromo compound 1a' (0.5 g, 1.09 mmol) in dry THF (10 mL) at room temperature over 30 min. The resulting mixture was stirred for additional 5 h and decomposed with saturated aqueous sodium dihydrogen phosphate (10 mL) and the product extracted using ethyl acetate (2×20 mL). The combined extracts were washed successively with water (2×15 mL) and brine (2×15 mL), and dried (Na_2SO_4). Removal of the solvent followed by flash column chromatographic purification (silica gel, 10% EtOAc in hexane) afforded the dimerized compounds 2a (0.22 g, 53%) and 10 (40 mg, 10%).

4.2.19. Dimerization of benzyl bromide 13 using phenylmagnesium chloride

Interaction of benzyl bromide **13** (0.5 mL, 4.21 mmol) with phenylmagnesium chloride (6.3 mL, 12.6 mmol, 2.0 M in THF) at room temperature for 8 h followed by the usual workup afforded inseparable mixture of diphenylethane **14** and biphenyl **5** in 56 and 53% yields (based on 1 H NMR spectral data 17); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.59 (4H, t, *J* 7.1 Hz, ArH),

7.43 (4H, t, J 7.8 Hz, ArH), 7.35 (2H, t, J 6.0 Hz, ArH), 7.26 (4H, t, J 7.5 Hz, ArH), 7.20—7.16 (6H, m, ArH), 2.92 (4H, s, CH₂); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 141.8, 141.3, 129.7, 128.8, 128.4, 128.3, 127.3, 127.2, 37.9.

4.2.20. Dimerization of benzyl bromide 13 using in situ generated phenylzinc bromide

To a solution of phenylmagnesium chloride (5.3 mL, 10.51 mmol, 2.0 M in THF) in dry THF (20 mL), anhydrous ZnBr₂ (2.84 g, 12.61 mmol) was added and the mixture stirred for 15 min. To this bromo compound **13** (0.5 mL, 4.21 mmol) was added and the mixture stirred for 4 h. The usual workup yielded mixture of diphenylethane **14** and biphenyl **5** in 52 and 40% yields (based on ¹H NMR integration).

4.2.21. 2-Phenylcyclohex-2-enol 15

To a stirred solution of cyclohexen-1-one (0.5 g, 5.20 mmol) in dry THF (10 mL), benzyl bromide 13 (0.74 mL, 6.25 mmol) was added at 0 °C under N₂ atmosphere. To this phenylmagnesium chloride (5.2 mL, 10.42 mmol, 2.0 M in THF) was added. The reaction mixture was stirred for 2 h, quenched with saturated NH₄Cl solution (10 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of the solvent followed by column chromatographic purification (silica gel, hexane/EtOAc 92:8) afforded 15 (0.63 g, 70%) as a pale yellow liquid; [Found: C, 82.67; H, 8.17. C₁₂H₁₄O requires C, 82.72; H, 8.10]; R_f (10% EtOAc/hexane) 0.30; $\nu_{\rm max}$ liquid (KBr) 3415, 2933 cm⁻¹; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.51-7.48 (2H, m, ArH), 7.36-7.33 (2H, m, ArH), 7.27-7.24 (1H, m, ArH), 6.05–6.02 (1H, m, CH=*CH*CH₂), 5.79 (1H, d, J 10.0 Hz, CH=CH), 2.17-2.12 (2H, m, CH₂), 1.99 (1H, s, OH), 1.89–1.62 (4H, m, CH_2CH_2); δ_C (125.7 MHz, CDCl₃) 147.9, 132.3, 130.8, 129.5, 128.2, 125.6, 72.3, 39.7, 25.1, 19.3.

4.2.22. Attempted cross-coupling reaction of bromo compound $\mathbf{1a}'$ and bromo compound $\mathbf{1e}$ with phenylmagnesium chloride

1-Phenylsulfonyl-3-phenylthio-2-bromomethylindole 1a' (0.5 g, 1.09 mmol) and 1-phenylsulfonyl-4-bromomethylindole 1e (0.38 g, 1.09 mmol) in dry THF (20 mL) were stirred at 0 °C under N_2 atmosphere. To this phenylmagnesium chloride (2.7 mL, 5.45 mmol, 2.0 M in THF) was added. The reaction mixture was stirred for 5 h, quenched with saturated NH₄Cl solution (10 mL), extracted with ethyl acetate (2×20 mL), and the combined organic extract was dried (Na₂SO₄). Removal of the solvent followed by ¹H NMR analysis showed the presence of compounds 2a, 2e, 8, and 16.

4.2.23. 4-Benzyl-1-(phenylsulfonyl)-1H-indole 16

Phenylmagnesium chloride (0.5 mL, 1.0 mmol) was added to a stirred solution of $B(OMe)_3$ (0.23 mL, 2.0 mmol) in THF (10 mL) at 0 °C under nitrogen atmosphere. After 20 min, $Pd(PPh_3)_4$ (0.12 g, 0.10 mmol) and 1-phenylsulfonyl-4-bromomethylindole **1e** (0.35 g, 1.0 mmol) were added and the reaction mixture was stirred at room temperature for 12 h. It was

then quenched with saturated ammonium chloride solution (10 mL), extracted with ethyl acetate (3×15 mL), and the combined organic extract was dried (Na₂SO₄). The solvent was completely removed under vacuo to yield **16** as a colorless thick liquid (0.24 g, 68%); [Found: C, 72.53; H, 4.89; N, 4.11; S, 9.28. C₂₁H₁₇NO₂S requires C, 72.60; H, 4.93; N, 4.03; S, 9.23%]; R_f (10% EtOAc/hexane) 0.55; $\nu_{\rm max}$ (KBr) 1369, 1171 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.77 (3H, d, J 7.5 Hz, ArH), 7.44–7.36 (2H, m, ArH), 7.29 (2H, t, J 7.7 Hz, ArH), 7.16–7.03 (6H, m, ArH), 6.91 (1H, t, J 7.2 Hz, ArH), 6.54 (1H, d, J 3.0 Hz, ArH), 4.04 (2H, s, CH₂); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 139.1, 137.3, 133.8, 132.8, 132.7, 129.1, 128.2, 127.7, 127.4, 125.7, 125.1, 124.9, 123.8, 122.7, 110.6, 106.5, 28.7.

Acknowledgements

We thank CSIR, New Delhi (01(2071)/06/EMR-II) for the financial support. N.R. and C.P. thank CSIR for CSIR-SRF fellowship. R.S. and V.D. thank UGC for fellowship. Authors thank DST-FIST for 300 MHz NMR facility.

References and notes

- (a) Gribble, G. W.; Allen, R. W.; Lehoullier, C. S.; Eaton, J.; Easton, N. R.; Slayton, R. I.; Sibi, M. P. J. Org. Chem. 1981, 46, 1025–1026;
 (b) Gribble, G. W.; Saulnier, M. G.; Sibi, M. P.; Obaza-Nutaitis, J. A. J. Org. Chem. 1984, 49, 4518–4523;
 (c) Sha, C.-K.; Yang, J. F. Tetrahedron 1992, 48, 10645–10654;
 (d) Nagarathnam, D. Synthesis 1992, 743–745;
 (e) Mohanakrishnan, A. K.; Srinivasan, P. C. J. Org. Chem. 1995, 60, 1939–1946;
 (f) Mohanakrishnan, A. K.; Srinivasan, P. C. Tetrahedron Lett. 1996, 37, 2659–2662.
- (a) Mohanakrishnan, A. K.; Balamurugan, R. Tetrahedron Lett. 2005, 46, 4045–4048; (b) Mohanakrishnan, A. K.; Ramesh, N. Tetrahedron Lett. 2005, 46, 4231–4233; (c) Mohanakrishnan, A. K.; Balamurugan, R.; Ramesh, N. Tetrahedron Lett. 2005, 46, 8189–8193.

- (a) Rajeswaran, W. G.; Srinivasan, P. C. Synthesis 1992, 835–836; (b) Rajeswaran, W. G.; Srinivasan, P. C. Indian J. Heterocycl. Chem. 1992, 2, 89–91.
- Mohanakrishnan, A. K.; Ramesh, N.; Prakash, C. Tetrahedron Lett. 2005, 46, 6983-6985
- The required bromo/chloro compounds were prepared via allylic bromination/chlorination of the corresponding methylindoles using NBS/NCS in the presence of a catalytic amount of benzoyl peroxide in CCl₄ at reflux.
- A sample of authentic benzylindole 8/16 was prepared using a Pd-mediated coupling reaction of corresponding bromo compound with in situ generated PhB(OMe)₂.
- 7. Qian, H.; Negishi, E. Tetrahedron Lett. 2005, 46, 2927-2930.
- Kuno, A.; Saino, N.; Kamachi, T.; Okamoto, S. Tetrahedron Lett. 2006, 47, 2591–2594.
- (a) Nakao, J.; Inoue, R.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1997,
 62, 1910–1911; (b) Terao, J.; Saito, K.; Nii, S.; Kambe, N.; Sonoda, N.
 J. Am. Chem. Soc. 1998, 120, 11822–11823; (c) Hayashi, Y.; Shinokubo,
 H.; Oshima, K. Tetrahedron Lett. 1998, 39, 63–66; (d) Fujioka, T.;
 Nakamura, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2257–2259; (e) Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am.
 Chem. Soc. 2002, 124, 6514–6515.
- (a) Ward, H. R.; Lawler, R. G.; Narzilli, T. A. Tetrahedron Lett. 1970, 47, 521–524; (b) Maeda, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1996, 61, 6770–6771; (c) Inoue, A.; Shinokubo, H.; Oshima, K. Synlett 1999, 1582–1584.
- 11. Inoue, A.; Shinokubo, H.; Oshima, K. Org. Lett. 2000, 2, 651-653.
- Nagarathnam, D.; Vedachalam, M.; Srinivasan, P. C. Synthesis 1983, 156-157
- (a) Barrero, A. F.; Herrador, M. M.; Quílez del Moral, J. F.; Arteaga, P.;
 Arteaga, J. F.; Piedra, M.; Sánchez, E. M. Org. Lett. 2005, 7, 2301–2304;
 (b) Barrero, A. F.; Herrador, M. M.; Quílez del Moral, J. F.;
 Arteaga, P.; Akssira, M.; Hanbali, F. E.; Arteaga, J. F.; Diéguez, H. R.;
 Sánchez, E. M. J. Org. Chem. 2007, 72, 2251–2254.
- Yanglong, Q.; Guisheng, L.; Huang, Y.-Z. J. Organomet. Chem. 1990, 381, 29-34.
- Mandal, S. K.; Jana, S.; Roy, S. C. Tetrahedron Lett. 2005, 46, 6115
 6117.
- The Aldrich Catalogue; Sigma-Aldrich Chemicals: Bangalore, India, 2007–08; p 329.
- Pouchert, C. J.; Behnke, J.; The Aldrich Library of ¹³C and ¹H FTNMR Spectra, 1st ed.; Aldrich Chemical Company: Milwaukee, WI, USA, 1993; Vol. 2, pp 8A and 28C.